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A General Theory for the Flow of 
Weakly Ionized Gases 

S H LAM* 
PI inceton University,  Princeton, N J 

A general theory is developed for the flow of a weakly ionized gas about an arbitrary solid 
body with absorbing surfaces The main interest lies in the prediction of the electrical re- 
sponses of the body as a function of the pertinent properties of the flow The theory is based 
on continuum formulation, and is valid when 1) the mean-free-path of the charged particles 
is much smaller than the thickness of the sheath and 2) the debye length is much smaller than 
the thickness of the boundary layer adjacent to the body surface The entire range of flow 
velocity in terms of an electric Reynolds number R is investigated, but the detailed analysis is 
devoted to the case R 1’2>>1 It is found that the electrical disturbances can be divided into 
three physically distinct and mathematically uncoupled regions, namely the outer region, 
the ambipolar diffusion region, and the sheath region Closed-form analytical results are ob- 
tained for the floating potential and the current-voltage characteristic These are useful 
in the interpretations of Langmuir probe data Detailed structures of the solutions are 
given in terms of explicit universal functions 

I Introduction 
HE importance of Langmuir probes as a research tool T in ionized gases is well recognized The basic theory 

for such probes, however, remains rather inadequate In 
most applications the density is extremely low so that con- 
tinuum formulations are difficult to justify However, 
because of the inherent simplicity of continuum in com- 
parison with molecular theory, it seems reasonable to attack 
the problem by investigating thoroughly the consequences 
of a continuum theory and see if various kinds of rarefied 
corrections can be developed later In  any case, the presence 
of a correct continuum theory should help improve our 
understanding of the problem in the entire density range 

In  the present paper, we are concerned with the flow of a 
weakly ionized gas over an arbitrary solid body and 
are interested in the electrical response of the body When 
the gas is quiescent and not flowing, the continuum theory 
for a sphere has been treated extensively by Su and Lam1 
and Cohen2 When the gas is flowing, the problem near 
the stagnation point has been treated by Chung3 and Talbot 

The basic assumptions underlying the present theory 
are the following: 

1) The mean-free-path I of the charged particles is very 
small and is much smaller than the thickness of the sheath 
adjacent to t.he body surface 

2) The characteristic length L of the problem is much 
larger than h , the debye length We require that 

h. << R-112 

L 
where R is the electric Reynolds number, which is generally 
of the same order as the viscous Reynolds number 

3) The Mach number of the flow is very small so that  the 
flow can be assumed incompressible 
4) The diffusion velocities of the ions and electrons due to 

any electric field present are small in comparison with their 
thermal velocities 
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5 )  The gas is only weakly ionized so that no electro- 
hydrodynamic interactions are considered The velocity 
field of the neutrals is assumed known 

6) The flow is steady; the freestream is neutral with zero 
electric potential and uniform charge densities The proc- 
esses of ionization and de-ionization are frozen in the gas 
phase There is no applied magnetic field, and induced 
magnetic effects are neglected 

7) All physical properties such as diffusion coefficients are 
taken to be constants 

8) Electron and ion temperatures may have different 
values but are uniform in space 

9) The solid surface is “absorbing ” 
Within this much simplified framework, the general prob- 

lem can readily be formulated The physical phenomena 
being studied are as follows Whenever a charged particle 
strikes an “absorbing” surface, the present theory stipulates 
that it is absorbed in the sense that it loses its charge by re- 
combination on the surface Thus, solid surfaces act as 
sinks to charged particles Electrons, in general, have 
much larger thermal velocities than the massive ions, and, 
consequently, per unit time more electrons are likely to 
strike the surface than the slower moving ions As the 
electrons diffuse in the general direction of the surface, the 
slower ions retard the diffusion by setting up an electrostatic 
field This process is called ambipolar diffusion, and the 
associated electric potential field falls in the direction of 
the charge motion Immediately next to the body surface 
the number density of electrons becomes too low to carry 
the ions, and the potential of the body surface and the ions’ 
own diffusion motion take over A sheath of high-electric 
field, therefore, exists Outside the ambipolar diffusion re- 
gion, convection effects dominate, and the electron and ion 
number densities are quite uniform However, for R-l12 << 
1, the effects of the body potential may penetrate far outside 
the ambipolar region, giving rise to currents Thus, the 
mere presence of solid surfaces in an ionized gas will, in 
general, cause electrical disturbances It is the purpose of 
the present paper to study these electrical effects 

2 General Formulation 

We consider an incompressible viscous flow over an arbi- 
The velocity field q of the neutral gas is trary solid body 
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assumed known I'he electrostatic problem is then gov- 
erned by t,he following set of equations: 

v ~ P  = -4mL2(Zni - n )  (2  1) 

q Vni + v Ti = 0 (2 2) 

q v n + v r = O  (2 3) 

where P is electric potential, L is a characteristic length with 
which all spatial variables are nondimensionalized, 2 is the 
charge number of ions, n, and n are number densities, rz 
and r are number fluseb, D, and D are diffusion coefficients, 
and T,  and T are temperatures for ions and electrons, respec- 
tively It is assumed that T,  need not be identical with T ,  
and the ratio T,/T is a t  most O(1) Mobilities of ion and 
electrons have been related to their diffusion coefficients by 
means of Einstein's relation All physical properties are 
assumed constant, and the gas is assumed to be weakly ionized 
with constant electron number density n in the freestream 
We shall consider only steady flow problems 

We nondimensionalize the variables as follows : 

where U, is the characteristic velocity of the problem We 
denote by cy, 6, e, and R, the following dimensionless 
parameters: 

p = -  Di 
ED 

The governing equations now become the following : 

a2V'$ = Ni - K (2 8) 

R(V V N i )  + V yi = 0 (2 9) 

PR(V O N )  + V y = 0 (2 10) 

yi = NiV* - €VNt (2 11) 

y = - N V $  - ViV (2 12) 

By substituting yi and ye from Eqs (2 11) and (2 12) into 
Eqs (2 9) and (2 lo), we have 

R(V V N i )  + V (iViV$ - cVNi) = 0 (2 13) 
PR(V V N )  - V (NV$+ ON) = 0 (214) 

Eliminating N from Eq (2 14) by using Eq (2 8), we have 

PR(V v N ~ )  - V [NiV$ -I- ON;] 
PRa2V V(V2$) - a2V [V$V2$ + V(V2$)l (2 15) 

Adding Eqs (2 13) and (2 15), we have 

(I + E ) v ~ N ~  - (1 + P)R(V ON,) = 

0'8 [V$Vz$ + V(V2$)l  - PRa2V V(V2$) (2 16) 

Multiplying Eq (2 13) by /3 and subtracting the result 
from Eq (2 15), we have 

v [(I + @)N,v$ + (I - EP)VAT,I = 
a2V [V$V'$ + VCV2$)] - PRdV V(V'$) (2 17) 

Equations (2 16) and (2 17) are exact within the framework 
Since their right-hand sides are identi- 

(2  18) 
Equation (2 18) may be used in place of either Eqs (2 16) or 
(2 17) 

We shall consider the cases of moderate and low-electric 
For the present, let us consider 

of the present theory 
cal, then by equating, we recover Eq (2 13) : 

R(V V N , )  = €V2N,  - V (N,V$) 

Reynolds number in Sec 8 
the limiting case of R >> 1 Then Eq (2 18) reduces to 

V VAT, = O(Rpl) 0 

and its solution is simply 
N i  = 1 

Using this result in Eq (2 17), a complicated equation for 
$ is obtained For arbitrary a2, P, E ,  and Ra2, it  is satisfied 
by 

(2 20) V'$ = 0 

which is the governing equation for $ in the flow field We 
shall call this the outer solution and denote it by $ = 

It is valid away from the body surface The distribution of 
Ni and N in this outer region are quite uniform, for Eqs 
(2 20) and (2 8) together imply 

lim (N, - N )/cy2 = 0 (2 21) 
R-co 

regardless of the magnitude of a2 
The boundary condition a t  infinity for $ is simply $ = 0 

To solve Eq (2 20), we need also the value of $ about the 
solid body As we shall see presently, there exists an electric 
boundary layer immediately adjacent to the body surface 
in which the value of $ varies rapidly For the moment, 
let us denote the value of $ a t  the outer edge of this boundary 
layeri by $o, which is distinct from the value of $ on the 
body surface, $B( #$,,) The distribution of $B is, of course, 
arbitrary and is free to be specified as part of the boundary 
conditions of the problem The distribution of $o is, how- 
ever, unknown and must be found by a detailed boundary- 
layer analysis. 

Note that v2$ = 0 does not permit two-dimensional 
solutions satisfying the requirement that $ = 0 at infinity 
Hence, the outer solution + must be a three-dimensional 
solution, and the body geometry is important 

For 
simplicity, we shall assume quasi two-dimensional flow 
adjacent to the body surface We let 2, y be boundary-layer 
coordinates$ with z directed along the body in the direction 
of flow and y directed normal to the body surface We intro- 
duce a scaled normal coordinate 7 by 

The boundary layer analysis now proceeds as follows 

7 = yR1lZ (2 22) 
In terms of z and 7, Eqs (2 16) and (2 17) become 

t Subscript 0 shall always indicate conditions at the outer 
Subscript B shall denote 

1 In two dimension, boundary-layer coordinates are simply 

edge of the electric boundary layer 
conditions on the body surface 

local Cartesian coordinates erected on the surface of the body 
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where 

Terms of order O(R-l12) and higher have been neglected 
The product Ra2 is assumed finite The velocity com- 
ponents u and v in the x and y directions are of order O(1) 
and O(R-ll2), respectively, as is evident from the basic 
continuity equation of the neutral gas flow, 

The governing equations for the electric boundary layer 
are Eqs (2 23) and (2  24) and are clearly of sixth order in r]  
The appropriate boundary conditions are: 

as R , the viscous Reynolds number of the basic flow The 
ratio R/R, is w/Di where v is kinematic viscosity, and v/DI 
is called the Schmidt number The magnitude of E is gen- 
erally of 0(1), but in some cases it may be small Hence, 
we expect that for E << 1 the electric boundary layer will be 
thicker than the viscous boundary layer The magnitude 
of P is generally very small, being proportional to 

[(me/mi> (Te/Ti)]1/2 
where m, and mi are electron and ion mass, respectively 
The magnitude of Ra2 is the square of the ratio of debye 
length to the thickness of the electric boundary layer and 
is a very small number for most situations The magnitude 
of +B, the potential on the body surface, can often be a large 
number For example, if Te = 6000’ K and P B  = -10 
v, then E 20 For the present time, we shall assume tha$ 
the range of $5 considered is O(R112), so that the third 
boundary condition in Eq (2 28) is considered finite even in 
the limit of R >> 1 

on the body surface, The incompressible assumption on the basic flow is made 
in the spirit that compressibility effects can be included by 
standard transformations 3 4 In  Sec 4-7, we shall study 
the structure of the electric boundary layer for R-112 << 1 
using Eqs (2 23) and (2 24) under the further assumptions 
that Ra2 << 1 In  Sec 8, we shall outline the appropriate 
analysis for the entire range of R The R a 2  >> 1 case can 
also be analyzed straightforwardly, but since it is of no 
practical interest we shall not be concerned with it 

$ = $ B  
Ni = 0 

N 
(2 27)§ a29 = Ni - Ra2 - 

bv2 

Ni = 1 

a t v +  Q) 

(2 28) 4 Ambipolar Diffusion 
N = 1  

1 
av 9 = R1/2 (n v$)O 

When Ra2 << 1, we may neglect terms involving Ra2 in 

bN bN 1 + E b2N 
where n is the unit outward normal to the body surface, and 
(n v $ ) ~  is the normal derivative of the outer solution $ at 
the edge of the electric boundary layer and is assumed finite 
After the electric boundary layer problem is solved, the value 
of #o will come out as part of the solution: 

9 0  = $(x, Y = 0) 

Eq 23) to Obtain 

(4 1) 

where N denotes either Ni or N e  in this ambipolar region 
Note that u and vR112 are functions of x, yR l f z ,  and (R/ 
RJ1I2, and not of x and r]  alone unless R/Re is unity Equa- 
tion (4 1) is a simple convection-diffusion equation We 
shall write the boundary conditions as follows: 

u - + vR1/2 - = __ ~ 

bX 377 1 + P 3772 

(2 29) - - lim {+ - 
v-m 

Knowing i l/o about the body, the distribution of $ in the outer 
region can then be calculated by standard methods from 
Eq (220) 

3 Preliminary Discussion 

In  the present problem, we have the following dimensionless 
parameters: or2, E, P, R, Re (which is the viscous Reynolds num- 
ber implicit in the basic velocity profiles), and a presentative 
value of +B The first step in our analysiswas to establish that 
whenR>> 1, an outer solution existswith theproperties that the 
electron and ion number densities are essentially undisturbed 
and that $is harmonic Next we establish that in a thin layer 
of thickness O(R-1/2) adjacent to the body surface an electric 
boundary layer exists in which electron and ion number 
densities as well as 9 vary rapidly The governing equa- 
tions for this electric boundary layer are Eqs (223) and 
(2 24), and they are derived by a straightforward limiting 
procedure in which R is allowed to tend to infinity while 
keeping Ra2 finite The accuracy of Eqs (2 23) and (2 24) 
is O(R+12), and terms of this order originated mainly from 
the use of boundary layer coordinates These equations 
still contain three parameters E, p, and Ra2 In  a realistic 
situation, the magnitude of R is generally of the same order 

0 The values of Ni and N e  on the body surface are of order 
0 [(Z/h )(Rcrz)1/6] where 2 is the characteristic mean-free-path 
of the charge particles and is neglected in the present theory 
(seeSec 9) 

(4 2) 

Since Eq (4 1) is parabolic, appropriate upstream “initial” 
condition is also required In  Eq (4 2), ~ * ( x )  is some arbi- 
trary function indicating the division of the ambipolar diffu- 
sion region and a sheath region immediately adjacent to the 
body surface and is to  be determined later After the solu- 
tion is obtained, we can calculate the quantity 

(4 3) 

a s r +  Q) N = l  
as r]  + r ] * ( ~ )  > 0 N = 0 

I = I(x) = (bN/br])[x, 7 = r]*(x)] 
Both 1 and r]* are assumed to be always positive 

Eq (2 8) we have 
In  this region charge separation is negligible since from 

N = N = Ni + O(Ra2) (4 4) 
Neglecting the right-hand side of Eq (2 24) we can integrate 

once to give 

where the constant of integration is determined by fitting 
boundary condition, Eq (228), a t  r]  = Q) Integrating 
Eq (4 5), we have simply 

1 - E P  1 
l + P  N 

9 = $ d X )  + ~ In- + 
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Near q -+ q * ( x ) ,  the ambipolar solutions for Ni ,  N, ,  and 9 
can be written as 

Ni E I (q  - ?I*) 

As I] + q*, the value of 11, tends to infinity A thin sheath 
region exists immediately adjacent to the wall Equations 
(4 7) will serve as boundary conditions to this sheath region 

5 Potential Equation for the Sheath 
To study the structure of the sheath, we introduce the 

following transformation : 

11 = r * ( ~ )  + ( ~ a 2 / 1 ) 1 / 3 t  (5  1) 

Ni = (Rot2P)”/3K(t) (5 2) 

N ,  = ( R ~ I ~ P ) ’ / ~ G ( ~ )  (5  3) 

By substituting Eqs (5  1) and (5 2) into Eq (2 23), the con- 
vection terms on the left-hand side become of order O[(q*)  
(Ra2/1)213] compared with terms on the right-hand side, 
provided that I ,  v*, and their s derivatives are of order 
unity Equation (2 23) then becomes 

Equation (5 4) can be integrated twice immediately to give 

+ C,(t + C2) (5 5) 

where C1 and C2 are integrating constants which may be 
functions of x To fix these constants, we consider the be- 
havior of K and + as t -+ where they must match with the 
ambipolar solutions Substituting Eqs (5 1-5 3) into Eqs 
(4 7) we have 

R(t+ m )  = t 

G(t-+ m )  = t 
(5 6 4  

(5  6b) 

Consequently, C1 = 1 + e and C; = 0 Hence, we have 

(5 7) 
1 a+ d2+ 

(1 + E)(K - t )  = - 2 %  ()+z 
At this point, we need another equation between K and + This is obtained by eliminating Q between Eqs (2 23) 

and (2 24) and writing the resulting equation in the new 
variables: 

that can again be integrated once to give 

where the constant of integration has been chosen to satisfy 
boundary conditions in Eqs (5 6) Solving for K from Eq 
(5 7) and substituting into Eq (5 8), we have finally 

d3+ . ) - - - - (  d + d V  1 q ) 3 -  
dt3 - (’ - dt dt2 2 dt 

a (1 + e )  t = (I + e)X (5 9) 

where 

This is the same equation studied by Cohen 

6 Sheath Solution 
Since + itself does not appear in Eq (5 9), we can lower the 

order of the equation by defining 

Equation (5 9) then becomes 

d2W dW W 
E - = ( E  - 1) w - + - [WZ + 2(1 + E ) t ]  - 

dt 2 dt2 

(1 + E ) X  (6 2) 

On the body sur- 

K = O  (6 3) 

G = O  (6 4) 

dW/dt(t = t ~ )  = 0 (6 5)  

tB  = - r * ( ~ / ~ a 2 ) l / 3  (6 6) 

The boundary conditions are as follows 
face, we require that 

Since K - G = -dW/dt, we have a t  q = 0 

where t B  is the value of t at  q = 0 and is given by 

from Eq (5 1) 
at t = tB ,  we have 

From Eq (5 7), since K = 0 and dW/dt = 0 

WB2 = -2(1 + E)tg (6 7) 

Equation (67) states that the wall lies somewhere on a 
parabola in the (W,t) plane At t ---f m ,  we require that the 
sheath solutions match with the ambipolar solutions given 
in Eqs (4 7) : 

W(1+ a) = X/ t  (6 8 )  

Equations (6 5,  67 ,  and 68 )  are the complete boundary 
conditions for Eq (6 2) 

Although no rigorous proof is offered, the solution W ( t )  is 
considered unique and is completely specified by the values 
of e and X 7 In other words, for a given pair of E and X ,  
only one single solution can satisfy Eq (6 2) and its boundary 
conditions (6 5, 6 7, and 6 8) Hence, t B  is some universal 
function of e and X and can be calculated once and for all 

After W(t;E,X) has been obtained, the distribution of + 
in the sheath is given by 

+ = +&) - Ll(ex,w(t;+7dt (6 9) 

As t -+ m , this must be matched with the ambipolar diffusion 
solution near 7 = q* Since Eq (6 9) diverges a t  t = m, 

we first rewrite it  for large t as 

+ = + B  - X lnt - F ( E , X )  (6 loa) 

where 

The function F ( E ,  X )  is a universal function of E and X 
Figure 1 is a plot of F vs X for e << 1 obtained to slide rule 
accuracy from Cohen’s numerical solutions An important 
property of F is that F --f m as X + 1 and F + - as 

7 For the special case e = 0, an is0 cline study of the simplfied, 
first-order equation for W gives convincing support to  the 
uniqueness claim 



260 S H LAM AIAA JOURNAL 

Fig 1 F vs (1 - @/1 + 0) - [(n A$)o/ZR~/~] for 6 << 1 

X -+ - E  

the origin 

as, for 7 s 7*, 

$ = $&) - X Int - - X ln(RdZ2) + 

For E = 1, the curve F vs X is symmetric about 

The ambipolar diffusion solution, Eq (4 6), is now written 

1 
3 

(n v')O [I + D ]  (6.11) 
Z R1lz 

where 

Comparing Eqs (6 loa) and (6 11), we have 

with 

(n '')' (1 + D )  (6 13) 
1 1 
3 RorzZ2+ IR'12 A$ = F ( E , X )  + - X In __ 

It is clear that A$ is the potential difference between $B and 
$o If tg(~,X) is finite and of order unity, then from Eq 
(6 6) we see that r]* = O ( R C X ~ ) ~ / ~  This is the thickness of 
the sheath and is seen to be small Hence, in the calculation 
of the ambipolar diffusion solution for N ,  r]* can be set to 
zero, thus greatly simplifying matters For this case, I is 
independent of either X or R a 2  If tB is very large,** then 
Eq (6 6) must be used to supplement the ambipolar calcu- 
lation, and I itself will depend on X and Ra2 besides the basic 
flow velocity profiles Note that, in the special limiting case 
of (R/R,)1/2 << 1, the viscous boundary layer is much thinner 
than the ambipolar diffusion layer For this case Eq (4 I) 
reduces to 

aN/bE = b2N/bqZ (6 14) 
where 

and U(z)  is the inviscid basic flow velocity evaluated at the 
edge of the viscous boundary layer Eq (6 14) can be solved 
exactly by a variety of methods, and if v* 0 then I will be 
a function of 4 only 

For a given flow of weakly ionized gas, A$ is mainly con- 
trolled by the values of E and X and is only weakly dependent 
on Razz2 since this group of parameters appears logarithmi- 
cally 
lution via the term (n ~$O)/Z(R) ' /~  For finite $B and asymp- 

The magnitude of X ,  however, depends on the outer so 

totically large R, X will reduce to simply (1 - &/(1 + 
p), and for this case A$ will be independent of the outer 
solution It should be noted that the detailed velocity pro- 
files, and therefore the value of Re, affects only the value of 
I Hence, as far as A$ is concerned, they have very small 
effects 

Figures 2a and 2b show qualitatively the number densities 
and potential distributions in all three regions I n  Fig 2b, 
several cases are shown to illustrate the effects of +B on the 
outer region The number density distributions are inde- 
pendent of $B except in the sheath region 

7 Current-Voltage Characteristics 

The normal surface current per unit area is, by definition, 
given by 

J B  = eln (I? - Zri)1,=o (7 1) 

From simple kinetic theory, the electrical conductivity of the 
gas is given by5 

We can thus define a characteristic current density J ,  by 

J ,  = u kT, -~ = (1 + P) Denerne ___ 
eL L 

Using this expression in Eq (7 l), we have 

(7 3) 

Under the approximations that PR3/2a2 << 1 and R-112 << 1, 
it  can be shown6 that it is consistent to evaluate Eq (7 4) a t  
the edge of the ambipolar region instead of on the body sur- 
face Physically, this means that the current flow inside the 
electric boundary layer is essentially normal to the body 
surface Since Ni E N e  E 1 0  a t  the edge of the ambipolar 
region, we have from Eqs (2  11) and (2  12) the following ex- 
pression for JBIJ,: 

We now write, following Ref 6, 

Since the outer solution satisfies the Laplace equation, j ,  is 

NUMBER DENSITY 

t 

** A detailed analysis will show that, for small 1 - X, tb is 
O[ln(l/l - X ) ] 2 / 3  and F is O[ln(l/l - X)] 

F IG  za FIG 2b AI 

Fig 2 Numbei density and potential distributions 
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- JE 4) The ratio of saturation currents is then seen to be p 
Note that the original classical low-density theory for Lang- 
muir probes predicts that this ratio be EP instead of ,8 
m& 

FLOATING POTENTIAL t 

8 Arbitrary Electric Reynolds Numbei 

If R is finite, the outer solution loses its identity In  this 
section, we shall briefly outline the appropriate analysis for 
the entire range of R, but a2 << 1 is always assumed 

Low R Case, R << 1 

Eqs (2 16) and (2 17) reduce to 

-PB - 
I C  

When R << 1 so that terms of order O(R) can be neglected, 

v 1V+V2+ + V(V")l (8  1) 
a2 V 2 N ,  = __ 

l + €  

V [(I + P)NSV+ + (1 - EP)VN,I = 

Fig 3 Current-voltage characteiistic a2v IV+V2+ + V(0")l (S 2)  

o ( ~ )  and is generally positive 
tion of x and 
(6 12) and (6 13), we have 

using (7 5)  ill the defini- 
(7 6) and substituting the lesults in Eqs 

For a sphere the problem reduces identically to that studied 
by s u  and Lam1 and Cohen It is clear that the generaliza- 
tion to an arbitrary body is immediate In  the region away 
from the body surface, the physical process involved is only 
ambipolar diffusion We let a2 -+ 0 in Eqs (2 8, 8 1, and 
8 2 )  to obtain 

which relates J B  with +B and is, therefore, the current-voltage 
characteristic desired See Fig 3 

The first term in Eq (7 7) represents the potential drop in 
the outer region The term in braces represents the poten- 
tial drop in the ambipolar diffusion region The last term, 
F ( E ,  X ) ,  represents the potential drop inside the sheath 
Several important conclusions can be deduced from Eq (7 7) 
They are as follows: 

JB = 0 We have 
1) The floating potential is simply obtained by setting 

Hence, a plot of P B  (floating) vs ln(Ra212) will yield a slope 
equal to Q ( k T / e ) [ l  + 0(P) ]  Since P is generally very 
small, this affords a simple way of measuring T 

2) For JB/J, = O(1) and R-1'2 << 1, Eq (7 7 )  reduces to 

Hence, in this range of J B ,  the current-voltage characteristic 
is linear, and its slope is directly related to the freestream 
electrical conductivity 

3) Since F -j =t m as X ---f 1 and X -+ - E, the saturation 
currents are given by 

1 + E  
J g  = J,IR1I2 ___ 

1 + o  
Xote that 

$ = -  I - eo l n l  + $1 
l + P  N 

where 

V2N = 0 

v INV+lI = 0 (8 5 )  

iv = 1 at  infinity (8 6) 

The appiopriate boundary conditions are 

N = O  vG1 1 -+ m a t  the edge of the sheath 

Denoting by y the local normal coordinate measured froin the 
sheath edge, then for small y we can write the ambipolar 
solutions as 

N = i y  

where i = (n VN),=o and is now known, and XI is yet some 
arbitrary function of position on the body surface The 
analysis of the sheath can now proceed in a similar manner 
as that of Cohen's The distribution of X controls the cur- 
rent and therefore depends on +B and is determined by 
matching the outer ambipolar diffusion solution with the 
sheath solution 

Modeiate R Case, R = O(1) 

Eqs (2 16) and (2  17) 
distinct from the ambipolar region 

For moderate R, we again consider the limit of a -+ 0 for 
The outer region exists but is not 

We have for this region 

Ni s N = N 

where 
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I 
-VISCOUS B L O ( L R ~ )  

t REGION,, \’ 

Fig 4 Regions of electrical disturbances 

with boundary conditions identical to Eqs (86) The 
sheath analysis that follows is again identifical to Cohen’s 

9 Discussion 

In  a general problem where Ra2 << 1 is satisfied, the dis- 
turbances can be qualitatively described as follows Im- 
mediately adjacent to the body, there is a sheath From 
the present continuum theory, the thickness of the sheath 
Ysh is 

Yah (L/R1”) (Ea2) 1’3tg 

or 

Y& E heR-116(L/h )‘I3tB (9 1) 
and the potential drop across the sheath is F ( E ,  X) 
from Eq (9 1) that Y,,h >> h, in general 
there is an ambipolar diffusion region of thickness 

We see 
Next to this sheath 

Yamhipolar = LR-112 (9 2) 

across which the potential drop is given by the braces 
in Eq (7 7) For E << 1, the ambipolar diffusion region is 
generally thicker than the thickness of the viscous boundary 
layer External to the ambipolar diffusion region, the 
charge number densities are rigidly maintained uniform by 
convection, and in this outer region simple electrical con- 
duction prevails The extent of this region is O(JBL/J,) 
Thus, at highly negative probe potentials, the electrical 
field penetrates far into the outer region, the extent being 
O(PIR1’2L) At highly positive probe potentials, the ex- 
tent would be O(IR1/2L) If the body in question is used 
as a probe, we see that such extensive disturbances created 
by the probe are quite undesirable (See Fig 4) 

I n  order to use Eq (7 7), the current-voltage characteristic, 
one must first calculate the quantities j,, D, and I To illus- 
trate the procedure, let us assume that J B / J ,  is specified as 
a function of 5 on the body surface We can then solve 
the Laplace equation, Eq (2 20), by any standard methods 
using Eq (7 5)  as boundary conditions The value of j3(5) 

is simply obtained from Eq (7 6) Next we solve the 
simple convection diffusion problem, Eq (4 l), by any stand- 
ard methods and can as a first approximation take v* = 0 
in the boundary conditions, Eq (4 2) Once N is known, 
the values of D(x) and I ( z )  follow from their definitions, 

and #B (2) follows from Eq (7 7) This process is to be re- 
peated for every J B / J ,  assumed 

If the estimated sheath thickness, Eq (9 I), is much smaller 
than the estimated mean-free-path of the charged particles, 
then the continuum sheath analysis given in Secs 5 and 6 
would not apply However, the correct current-voltage 
characteristic would still be given by Eq (7 7) if we now 
interpret F ( E X )  as the appropriate noncontinuum sheath 
potential drop Actually, for this noncontinuum sheath F 
must depend on an  additional parameter K = R1/6(he/L)1/3 
(Z/he), which is the ratio of a characteristic charge-neutral 
mean-free-path to the sheath thickness In  other words, 
F = F(E,  X ,  K) When K -+ a, the sheath is collisionless 
At the present time, of course, there is no available theory 
for this function, but it appears possible to construct this 
function by a series of controlled experiments Note from 
Eq (9 1) that the sheath is much thicker than h The 
continuum sheath assumption is then formally valid when 
I!/y& << 1 In other words, we require 

K = R116(h,/L)1/3(Z/h ) << 1 (9 3) 
If Eq (9 3) is not satisfied, then the boundary conditions for 
Ni and N e  at the body surface should be modified in a similar 
manner as slip effects in low-density gas dynamics In other 
words, 

N(x,v = v*)ocK(bN/bn)(z,v*) = K1 

It is interesting to note that Eq (9 3) can always be satisfied 
for a given plasma if L is made sufficiently large 

An interesting feature of the structure of the potential 
distribution about the body is that for moderate body po- 
tentials, such as $B(floating) > I C / B  0, the body is sur- 
rounded by a positive potential ring when R-lI2 << 1 This 
positive potential ring decays in strength as R is decreased, 
thus it is not expected to be present in any noncontinuum 
theory Thus, if such a ring is detected in an experiment, 
it would serve as a good indication that the present con- 
tinuum theory instead of noncontinuum theory should be 
used To the author’s knowledge, no other theory, con- 
tinuum or otherwise, predicts such a positive potential ring 

In  the works of Chung3 and T a l b ~ t , ~  the existence of the 
outer solution was not appreciated In  Talbot’s model, the 
sheath was assumed to consist of a free-fall region, and ap- 
parently the potential drop was assumed to occur entirely 
in the sheath This assumption is not supported by the 
present work 
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